Broadband SiC based UV photodetector with integrated amplifier

1/4

GENERAL FEATURES

- Broadband SiC based UV photodetector in TO5 housing with attenuator
- o... 5 V voltage output
- peak wavelength at 290 nm
- max. radiation (saturation limit) at peak is 180 mW/cm², minimum radiation (resolution limit) is 18 μ W/cm²
- Applications: curing lamp control

What is a TOCON?

A TOCON is a UV photodetector with integrated amplifier converting UV radiation into a voltage. The V_{out} pin of the TOCON can be directly connected to a controller, a voltmeter or any other data analyzing device with voltage input. Modern electronic components and a hermetically sealed metal housing with UV glass window eliminate noise caused by parasitic paths inside the package and EMI. A TOCON is a perfect solution for each industrial UV sensing application starting from flame or fire detection at pW/cm² level up to UV curing lamp control at W/cm² level. This thirteen orders of magnitude measurement range is covered by ten different TOCONs that differ by their sensitivity. The TOCONs are produced as UV broadband sensors or with filters for selective measurement.

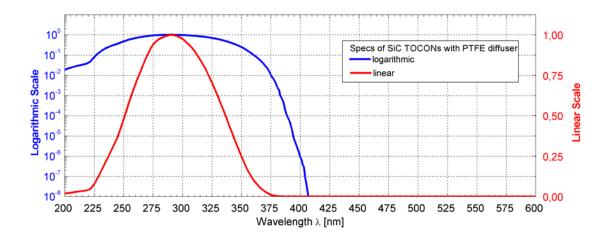
Silicon Carbide (SiC) detector chip inside

Sophisticated electronics and the sglux in-house produced SiC detector chip featuring a PTB-reported extreme radiation hardness make a TOCON a reliable component in harsh environments as well as for extremely low or extremely high UV radiation.

NOMENCLATURE

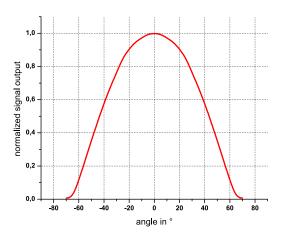
ABC, A, B, C, blue or GaP	1 10		
Spectral response	Irradiance limits (V _{supply} =5V, $\lambda = \lambda_{max}$)		
ABC = broadband	1 = 1.8 pW/cm ² 18 nW/cm ²		
110X 51070	$2 = 18 \text{ pW/cm}^2 \dots 180 \text{ nW/cm}^2$		
A = UVA $λ_{max} = 331 \text{ nm}$ $λ_{S10\%} = 309 \text{ nm} 367 \text{ nm}$	3 = 180 pW/cm ² 1.8 μW/cm ²		
B = UVB	$4 = 1.8 \text{ nW/cm}^2 \dots 18 \mu\text{W/cm}^2$		
$\lambda_{max} = 280 \text{ nm}$ $\lambda_{S10\%} = 243 \text{ nm} \dots 303 \text{ nm}$	5 = 18 nW/cm ² 18ο μW/cm ²		
C = UVC	6 = 180 nW/cm^2 1.8 mW/cm^2		
$\lambda_{max} = 275 \text{ nm} \lambda_{S10\%} = 225 \text{ nm} \dots 287 \text{ nm}$	7 = 1.8 μW/cm ² 18 mW/cm ²		
Blue = blue light $\lambda_{max} = 445 \text{ nm} \lambda_{510\%} = 390 \text{ nm} \dots 515 \text{ nm}$	8 = 18 µW/cm ² 180 mW/cm ²		
GaP = UV + VIS	9 = 180 µW/cm ² 1.8 W/cm ²		
$\lambda_{max} = 445 \text{ nm}$ $\lambda_{S10\%} = 190 \text{ nm} \dots 570 \text{ nm}$	10 = 1.8 mW/cm ² 18 W/cm ²		
E = UV-Index spectral response according to ISO 17166	2 = up to UVI 30		
	Spectral response ABC = broadband $\lambda_{max} = 290 \text{ nm}$ $\lambda_{510\%} = 227 \text{ nm} \dots 360 \text{ nm}$ A = UVA $\lambda_{max} = 331 \text{ nm}$ $\lambda_{510\%} = 309 \text{ nm} \dots 367 \text{ nm}$ B = UVB $\lambda_{max} = 280 \text{ nm}$ $\lambda_{510\%} = 243 \text{ nm} \dots 303 \text{ nm}$ C = UVC $\lambda_{max} = 275 \text{ nm}$ $\lambda_{510\%} = 225 \text{ nm} \dots 287 \text{ nm}$ Blue = blue light $\lambda_{max} = 445 \text{ nm}$ $\lambda_{510\%} = 390 \text{ nm} \dots 515 \text{ nm}$ GaP = UV + VIS $\lambda_{max} = 445 \text{ nm}$ $\lambda_{510\%} = 190 \text{ nm} \dots 570 \text{ nm}$ E = UV-Index E = UV-Index		

PRC Technologies Corp., Ltd. ลาดพร้าว 101 กรุงเทพ 10240 www.prctech-th.com โทรศัพท : 02 530 1714, 02 932 1711 มือถือ : 086 360 8600 อีเมล : contact@prctech.net LINE ID1 : prctec-info, LINE ID2 : @prctec


Broadband SiC based UV photodetector with integrated amplifier

2/4

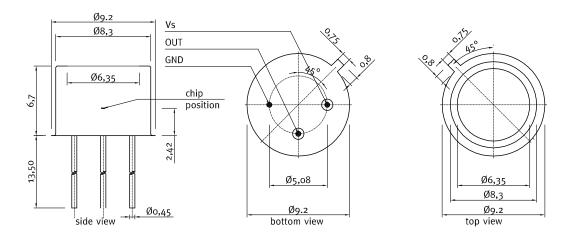
SPECIFICATIONS


Parameter	Symbol	Value	Unit
Spectral Characteristics			
Typical Responsivity at Peak Wavelength	S _{max}	28	$mV/mW/cm^2$
Wavelength of max. Spectral Responsivity	λ_{max}	290	nm
Responsivity Range (S=0.1*S _{max})	-	227 360	nm
Visible Blindness (S _{max} /S _{>405nm})	VB	> 10 ¹⁰	-
General Characteristics (T=25°C, V _{supply} =+5 V)			
Supply Voltage range	V _{Supply}	2.5 5	V
Saturation Voltage	V_{Sat}	V _{Supply} - 5%	V
Typical dark output voltage at 10 MOhm load	V _{Offset}	700	μV
Typical temperature Coefficient at Peak	Tc	< +-0.3	%/K
Typical Current Consumption	I	150	μA
Bandwidth (-3 dB)	В	15	Hz
Risetime (10-90%)	t _{rise}	0.069	S
(SHORTER RISETIME AND BANDWIDTH ON REQUEST)			
Maximum Ratings			
Operating Temperature	T _{opt}	-25 +85	°C
Storage Temperature	T _{stor}	-40 +100	°C
Maximum soldering temperature (for 3 seconds)	T _{sold}	300	°C
NORMALIZED SPECTRAL RESPONSIVITY			

PRC Technologies Corp., Ltd. ลาดพร้าว 101 กรุงเทพ 10240 www.prctech-th.com โทรศัพท : 02 530 1714, 02 932 1711 มือถือ : 086 360 8600 อีเมล : contact@prctech.net LINE ID1 : prctec-info, LINE ID2 : @prctec

Broadband SiC based UV photodetector with integrated amplifier

FIELD OF VIEW



Measurement Setup:

lamp aperture diameter: 10 mm distance lamp aperture to second aperture: 17 mm second aperture diameter: 10 mm distance second aperture to detector: 93 mm

pivot level = top surface of the detector window

DRAWING

Broadband SiC based UV photodetector with integrated amplifier

4/4

APPLICATION NOTE FOR TOCONS

The TOCONs need a supply voltage of $V_{supply}=2.5...5V_{DC}$ and can be directly connected to a controller or voltmeter. Please note that the theoretic maximum signal output is always a little less (approx. 5%) than the supply voltage. To learn more about perfect use of the TOCONs please refer to the TOCON FAQ list published at www.sglux.com.

CAUTION! Wrong wiring leads to destruction of the device.

For easy setup of the device please ask for a TOCON starter kit.

Miniature steel housing with M12x1 thread for the TOCON series

- Optional feature for all TOCON detectors
- Robust stainless steel M12x1 thread body, length 32 mm
- Integrated sensor connector (Binder 4-Pin plug) with 2m connector cable
- Easy to mount and to connect

Miniature PTFE housing with M12x1 thread for the TOCON series

- Optional feature for all TOCON detectors without concentrator lens
- Teflon (PTFE) M12x1 thread body, length 31 mm
- Wide field of view, dirt-repellant, water proof at wet side (IP 68)
- Integrated sensor connector (Binder 4-Pin plug) with 2m connector cable
- Easy to mount and connect, cleanable

The PTFE housing reduces the signal output by approx. 95%. Please consider this while selecting the TOCON's sensitivity range.

Plastic probes

- Optional feature for all TOCON detectors
- UV probes in small plastic housings with a TOCON inside
- Customized housings available
- Easy to mount and to connect
- Integrated sensor connector (Binder 4-Pin plug)
- Cable available

Water pressure proof TOCON housing

- Optional feature for all TOCON detectors without concentrator lens
- G1/4" thread, 10 bar water pressure proof
- Customized housings available
- Easy to mount and to connect
- Integrated sensor connector (Binder 5-Pin plug)
- Cable available